Feed URL:

Thu, 13 Jul 2017 11:43:18 EDT

International researchers led by Assoc Prof Chris McNeill’s group at Monash University have used an X-ray scattering at the Australian Synchrotron to understand how microstructure contributes to the performance of an organic solar cell made with a semiconducting polymer and fullerene thin film.

The investigators evaluated the performance, microstructure and photophysics of dual stack bulk heterojunction (BH) solar cells made with a low bandgap polymer and fullerene thin film in a study published in Advanced Energy Materials.

The research relied on a range of techniques including X-ray scattering, photoluminescence spectroscopy, ultrafast transient absorption spectroscopy and transient photovoltage measurements, to gain a better understanding of how the choice of fullerene acceptor influences microstructure,  photophysics and contribute to device performance.

A bulk heterojunction device is fabricated by coating a blend of two organic semiconductors between two electrodes. Thin films, which are usually less than 100 nanometres thick, offer production advantages for solar cells.

The close blending of materials is required for high performance because photo-generated excitons travel less than 10 nanometres before recombining, with photocurrent generation proceeding through via the dissociation of excitons a material interfaces. Efficient devices therefore require the blend to be optimally structured on the nanoscale.

2-dimensional X-ray scattering patterns of (a) PC61BM, (b) PC71BM and (c) ICBA. (d) line profiles integrated from 2D scattering patterns and (d) fitted parameters.

 

Advanced characterisation techniques are used to understand how microstructure, or morphology, contributes to power conversion efficiency.

Fullerenes act as electron acceptors in a device. Three novel compounds, PC71BM, PC61BM and ICBA were blended with a low band gap polymer, PBDTTT-EFT for the study.

The highest efficiency (9.4%) was found in the blend using the acceptor PC71BM, which also had the highest visible light absorption.

Prof Chris McNeill and collaborators used Synchrotron-based grazing incidence wide angle X-ray scattering (GIWAXS) to determine the molecular orientation of the polymer with respect to the substrate in the bulk of the thin film.  

The GIWAXS measurements provided information about the orientation of polymer crystallites in the bulk, with these crystallites needing to be properly aligned in order for charges to travel through the material more easily.

Resonant soft X-ray scattering was also carried out by co-author Dr Lars Thomsen at the Advanced Light Source at Lawrence Berkley National Laboratory in the US to clarify the structure and purity of domains.

Thomsen, a member the soft x-ray spectroscopy beamline team at the Synchrotron, has undertaken previous collaborations with the McNeill Group on organic electronics.

R-SoXS indicated that one of the blends, PBDTTT-EFT:PC71BM exhibited the largest domain size and highest domain purity, which was thought to facilitate charge separation and transport.

The scattering profiles also provided an indication of the roughness of the interfaces between the domains in the three compounds.

The R-SoXS and other methods suggested that the lower power conversion efficiency of the ICBA compound might be explained by rougher domain interfaces, lower crystallinity and smaller domain size.

Contributors include Dr Wenchao Huang and colleagues at Monash University, Dr Eliot Gann (now at Brookhaven National Lab), researchers from the University of California Los Angeles, the Indian Institute of Technology Bombay and Victoria University of Wellington.


Wed, 5 Jul 2017 11:55:16 EDT

A Monash-led group of geoscientists used the macromolecular crystallography beamline (MX2) Australian Synchrotron to help them determine the atomic structure of a new mineral discovered in a volcanic area of Far Eastern Russia. 

The research, which was published in American Mineralogist by Prof Joel Brugger of Monash and collaborators from Australia and Russia may provide insight into the processes responsible for the geochemical evolution of Earth. 

The authors reported that an analysis of Nataliyamalikite was challenging because of the small size of single crystals, composite nature of larger aggregates and the extreme light sensitivity of the mineral and the surrounding sulfur matrix. 

Nataliyamalikite grains could not be isolated using optical microscopy. 

X-ray powder diffraction measurements on microcrystals of Nataliyamalikite at 100 K indicated that  the structure was orthorhombic. 

The mineral which has only two atoms, thallium and iodide, in the asymmetrical unit cell, is considered to be a distorted version of rock salt.

The beam diameter was reduced to 7.5 nanometres by a collimator at the Australian Synchrotron MX2 micro-focus beamline to match the crystal size of the micro-aggregates of Nataliyamalikite, which were extracted from the amorphous sulfur matrix by focused ion beam scanning electron microscopy.

MX2 beamline scientist Dr Jason Price assisted in processing the beamline data, which was compared with a synthetic equivalent. 

Electron backscatter diffraction at Monash and in Russia confirmed an orthorhombic crystal lattice of the mineral at ambient conditions. 

The thallium-rich Nataliyamalikite forms in high temperature fumaroles, (thermal openings in areas surrounding a volcano) as a component of arsenic and sulfur-rich coating on lava and scoria around the vents.

In the paper, the authors also provided a description of the process that give rise to concentrations of thallium, leading to the formation of Nataliyamalikite.

Read more on the Monash website. 

 


Thu, 15 Jun 2017 11:41:00 EDT

More than 40 science and engineering graduate students, postdoctoral fellows and early career researchers from across the Asia-Oceania region attended the first Asia Oceania Forum (AOF) Synchrotron Radiation School in early June hosted by the ANSTO at the Australian Synchrotron and supported by the Australian Institute of Nuclear Science and Engineering (AINSE). 

The participants, who are interested in pursuing a career in synchrotron radiation-related fields, had the opportunity to attend a range of lectures and take part in practical sessions on six of the ten beamlines at the Australia Synchrotron.

Those who attended the week-long school came from China, Thailand, Japan, Korea, Taiwan, India, Singapore, New Zealand and within Australia to learn more about the theory and applications of synchrotron radiation for a wide range of science and technology research.

“We were greatly pleased by the level of interest in synchrotron technologies, which are proving to be invaluable across a range of applications and delighted to share Australian and international expertise with the group,” said Prof Richard Garrett, Senior Advisor, Strategic Projects, ANSTO, who was Co-Chair of the school with Dr Mike James, Head of Science at the Australian Synchrotron.

Guest lecturers travelled to Australia from South Korea and the US.

In addition to a general introduction to synchrotron radiation, light source, beamlines, and detectors, the curriculum included sessions on the techniques used on the Australian Synchrotron beamlines, such as medical imaging, powder X-ray diffraction, and micro fluorescence.

At the conclusion of the lectures and practical sessions, participants gave presentations based on their beamline investigations. 

“Actual hands on experience with the beamlines is invaluable for planning research projects and understanding the tremendous analytical capabilities of the instruments,” said Dr James.

The Asia Oceania Forum for Synchrotron Radiation Research (AOFSRR) is an association of the eight synchrotron operating and user nations in the Asian region: China, Thailand, Japan, Korea, Taiwan, India, Singapore and Australia,. Its mission is to strengthen regional cooperation in, and to promote the advancement of, synchrotron radiation research. Three additional countries are associate members: New Zealand, Malaysia and Vietnam.

ANSTO has had a close association with the AOFSRR since its inception in 2006, when it operated the Australian Synchrotron Research Program which joined the Forum as a foundation member representing Australia. Since 2012 ANSTO has served as financial manager of the AOFSRR, to facilitate the payment of membership fees by the eight full member nations.

The main activities of the AOFSRR are to organise an annual workshop and an annual synchrotron school. The Japanese SPring8 facility hosted the school, then known as the Cheiron School, from 2007 until 2015. This has now been replaced by the AOF Synchrotron School which will rotate among the 8 member countries. The next school will be held in South Korea, followed by Thailand.


Wed, 24 May 2017 16:24:46 EDT

Advanced imaging reveals unusual, unseen patterns in seabird feathers

The identification of essential chemical elements in the feathers of long-distance migratory seabirds using advanced X-ray imaging techniques promises new insights into the underlying physiological processes behind feather growth.

In research published in Nature Scientific Reports, a team of investigators led by ANSTO biologist Nicholas Howell and Prof Richard Banati provided evidence of previously unseen spatial patterns in the distribution of metals that do not appear to be linked to physical characteristics in the feathers.

Because the patterns are not linked to pigmentation, thickness or other structural characteristics in the feathers, the authors suggest another unidentified mechanism may be at work.

“Our collaboration has produced some remarkable depictions of the feathers that let us see into complex and pattern-forming, biochemical processes in cells,” said Prof Banati.

High resolution images collected using the X-ray fluorescence microprobe and Maia spectroscopic detector at the Australian Synchrotron, revealed independent distribution of zinc, calcium, bromine, copper and iron.

In this investigation, the technique was applied to the whole feather, and required no subsampling or extraction procedures  in order to accurately identify elements.

 “Using this powerful instrument and Maia detector, David Paterson and Daryl Howard were able to scan samples that were several centimetres in length at micron resolution,” said Howell.

X-ray fluorescence microscopy allows you to view hard biological structures in their natural state. The detector system speeds up the scanning of the sample in real time and delivers data at unprecedented resolution.

The images, which have previously unachieved sensitivity and resolution, provide a distribution map of a range of chemical elements in the feather.

Understanding the development of bird feathers is important for understanding the evolution of birds, formation of organs, tissue regeneration and the health status of individual animals.

The findings also have significant potential application more broadly in developmental biology.

“The same basic biochemical mechanisms that allow feathers to develop in birds are at work in other animals and humans, “said Howell.

For example, the identification of a distinct, repetitious pattern in the concentration of zinc in all samples was of particular interest.

Zinc is an essential element in birds for growth, the formation of enzymes, the development of the skeleton and a range of physiological functions.

These zinc bands resembled but were not related to distinct growth bands.

The exact mechanism that leads to the regular deposits of zinc is unknown but the scientists  noticed that the number of zinc bands appears to be the same as the number of days the feather grows, e.g. the duration of the moulting period.

“We do not have entirely accurate data on the rate of feather growth in a migratory seabird, which needs to be observed under conditions of the animal’s natural life-cycle,” said Howell.

“Nonetheless, such highly regular, biological patterns hold important information , because similar to tree rings , they are a natural time stamp that records events during the growth of these patterns.” said Howell.

Therefore, the patterns in the feathers may be useful in assessing the bird’s health and nutritional status retrospectively, in the way that tree rings indicate  past environmental events, such as droughts and floods.

The feathers came from three species of migratory shearwaters, birds that are known to travel over 60,000 kilometres per year on their migration to breeding areas.

Mr Howell said none of the work would have been possible without the painstaking field work in remote locations.

Single breast and wing feathers from the fleshfooted, streaked and short-tailed shearwater were collected on Lord Howe Island, several Japanese islands and Bundeena Beach (NSW) under the direction of co-author Dr Jennifer Lavers of the Institute of Marine and Antarctic Studies at the University of Tasmania.

 “It is very difficult to image and measure metals in biological samples, but it is something we can do with a variety of techniques at ANSTO using X-rays, neutrons and isotopes,” said Howell.

Last year, a similar approach was used to detect and measure strontium in the vertebrae of sharks.

The study revealed that the strontium correlated with the age of the individual and allowed age to be determined without reference to growth bands.

 


Tue, 4 Apr 2017 11:23:59 EDT

Infrared (IR) imaging technology at the Australian Synchrotron, developed specifically for carbon fibre analysis, has contributed to a better understanding of chemical changes that affect structure in the production of high-performance carbon fibres using a precursor material.

A research collaboration led by Carbon Nexus, a global carbon fibre research facility at Deakin UniversitySwinburne University of Technology and members of the Infrared Microspectroscopy team at the Australian Synchrotron, has just published a paper in the Journal of Materials Chemistry A, that identified and helped to explain important structural changes that occur during the production of carbon fibres.

The research was undertaken to elucidate the exact chemical transformation occurring during the heat treatment of polyacrylonitrile (PAN), which produced structural changes.

Left to right: Nishar Hameed, Maxime Maghe and Srinivas Nunna on the Australian Synchrotron Infrared Spectroscopy beamline.

The majority of commercial carbon fibres are manufactured from PAN but there has been an imperfection that occurred during production that affected its material properties. 

Because the conversion of PAN to carbon fibre did not occur evenly across the fibre, it resulted in a skin-core structure. 

Manufacturers want to prevent the formation of the skin-core structure in order to enhance the strength of the fibres.

The research lead by Dr Nishar Hameed provides the first quantitative definition on the chemical structure development along the radial direction of PAN fibres using high-resolution IR imaging. 

“Although it has been more than half a century that carbon fibres were first developed, the exact chemical transformations and the actual structure development during heat treatment is still unknown”. 

“The most significant scientific outcome of this study is that the critical chemical reactions for structure development were found to be occurring at a faster rate in the core of the fibre during heating, thus disrupting the more than 50-year-old belief that this reaction occurs at the periphery of the fibre due to direct heat.”

A multitude of experimental techniques including IR spectroscopy confirmed that structural differences evolved along the radial direction of the fibres, which produced the imperfection.

The difference between skin and core in stabilised fibres evolved from differences in the cross linking mechanism of molecular chains from the skin to the core. 

The information could potentially help manufacturers improve the production process and lead to better fibres.

“Using a technique called Attenuated Total Reflection (ATR) to focus the synchrotron beam, the IR beamline allowed the research team to acquire images across individual fibres, to see where carbon-carbon triple bonds in the PAN were being converted to double bonds,” said Dr Mark Tobin, Principal Scientist, IR, at the Australian Synchrotron, who is a co-author with Dr Pimm Vongsvivut and Dr Keith Bambery.

“Previous IR studies have been conducted on fibre bundles and powdered fibres, while we were able to analyse the cross section of single filaments.” 

To acquire detailed images of the fibres, which are only 12 microns across, the IR team modified the beamline for the experiment using a highly polished germanium crystal to focus the IR beam onto the fibres.

Lead author Srinivas Nunna received a post graduate research award from the Australian Institute of Nuclear Science and Engineering (AINSE) to support the study. 


Mon, 3 Apr 2017 0:00:00 EDT

Australians with cancer will be the first to benefit from the multi-million dollar Australian Cancer Research Foundation (ACRF) Detector launched at the Australian Synchrotron, fast-tracking cancer research by harnessing light a million times brighter than the sun.

Minister for Industry, Innovation and Science, Senator the Hon. Arthur Sinodinos, unveiled the ACRF Detector, which is akin to a turbocharged camera, and will take images at a speed and accuracy currently not possible at any other Australian research facility.

The detector will enable researchers, including those working in cancer, to more than double their outputs, gaining more answers at a faster rate.

Currently, more than 60 per cent of all the research conducted on the Synchrotron’s Micro Crystallography (MX2) beamline is dedicated to cancer research, helping scientists to understand and develop new drug targets and refine treatments for a disease that is the leading cause of death around the globe.

Top: Dr Tom Caradoc-Davies, Principal Scientist - MX beamline, explains the ACRF Detector to Australian Minister for Industry, Innovation and Science, Senator the Hon. Arthur Sinodinos with Lucy Jones and Professor Charlie Bond. 
Bottom left: Professor Charlie Bond and Lucy Jones in discussion with Australian Synchrotron Director, Professor Andrew Peele. 
Bottom right: Chairman of the ACRF Board, Tom Dery presents the cheque to ANSTO CEO, Dr Adi Paterson.  


ACRF CEO, Professor Ian Brown, said ACRF and its supporters are proud to have provided the $2 million grant that facilitated the purchase of the ACRF Detector.

“The ACRF Detector is a vital, core piece of equipment for cancer and medical research in Australia, and one that will be used by cancer researchers from all institutes, hospitals and universities,” said Professor Brown.

“It shows the three-dimensional structure of proteins, which do most of the work in cells, identifying opportunities to neutralise those involved in cancer and promoting those that may protect us from cancer.”

The Synchrotron is operated by the Australian Nuclear Science and Technology Organisation. Australian Synchrotron Director, Professor Andrew Peele, said the leaps that will be enabled by the new detector will more than double the facility’s capacity to collect data, leading to more targeted and effective treatments and, ultimately, improved patient outcomes.

“This new capability will take a beamline that was previously at full capacity – booked for use at all available hours of the day – and find it an extra gear, so it can deliver more research, and arm researchers with clear representations of protein structures,” said Professor Peele.

“There are a lot of questions that still need to be answered in the world of cancer research, and by partnering with ACRF and speeding up the throughput of important research, we are bringing more solutions closer than ever before.

“We’re essentially shifting from dial-up internet to high-speed broadband, putting our foot on the accelerator of cancer research technology, providing faster protein analysis to turbocharge cancer research and facilitate significant discoveries.”

Senator Sinodinos said the new ACRF Detector is a great example of how collaboration between research facilities, not-for-profits and government can improve outcomes for the Australian community.

“This investment in Australian research and technology has the potential to increase and quicken the rate at which research turns into practical applications for patients and the community,” Senator Sinodinos said.

“High quality research, collaboration and smart investment are needed to ensure that new research and knowledge are supported, and I am thrilled to be here today to witness exactly that, and officially reveal the ACRF detector.”

Attending the launch of the ACRF Detector with Minister Sinodinos was researcher and protein crystallographer from the University of Western Australia, Professor Charlie Bond, who has utilised the MX2 beamline for extensive protein analysis, including research into the childhood cancer neuroblastoma.

They were also joined by Lucy Jones, who is focused on driving change in survival rates through increased research into neuroblastoma, having lost her daughter Sienna to the illness in 2010.

“Losing a child to neuroblastoma has driven me to do all I can to support research in finding an effective treatment for this insidious disease and other childhood cancers, made all the more challenging due to the high cost of drug development and the rarity of most childhood cancers,” Ms Jones said.

"We must do everything we can to help researchers such as Professor Bond, and innovative technologies such as this, to help make the whole research process more efficient by reducing costs and time to clearly benefit the research of childhood cancers and other diseases, shortening the time between lab discoveries and clinical testing of new drugs,” she said.

Neuroblastoma occurs most commonly in infants and children under five years of age. It is cancer made up of cells that are found in nerve tissues called neuroblasts, commonly found in adrenal glands and along tissues around the spinal cord in the neck, chest, abdomen and pelvis.

The ACRF Detector was made possible by a $2 million grant from the ACRF, and additional contributions from Monash University, CSIRO, La Trobe University, NZ Synchrotron Group, the University of Western Australia, the Walter and Eliza Hall Institute of Medical Research, the University of Melbourne, the University of Queensland, the University of Sydney, the University of Wollongong, Victor Chang Cardiac Research Institute, the University of Adelaide, Australian National University and ANSTO.

Read more:

ACRF Detector fact sheet

Media coverage:

Channel 9 News - afternoon bulletin
Channel 9 News - 6pm
Channel 9 News online


Mon, 27 Feb 2017 14:07:05 EST

Cross-Tasman collaboration between Australian and New Zealand researchers has shed light on a protein involved in diseases such as Parkinson’s disease, gastric cancer and melanoma.

Using the Australian Synchrotron, a team of researchers led by Dr Peter Mace from the University of Otago, in collaboration with Australian scientists investigated a protein called Apoptosis signal-regulating kinase 1 (ASK 1) with the results published today in leading international journal PNAS.

Dr Mace says the protein plays an important role in controlling how a cell responds to cell damage, and can push the cell towards a process of programmed cell death for the good of the body, if damage to a cell is too great.

“We now know a lot more about how ASK1 gets turned on and off – this is important because in diseases such as Parkinson’s, stomach cancer and melanoma, there can be either too much or too little ASK1 activity,” he said.

The ASK1 protein gets its name from an ancient Greek word meaning “falling off” – apoptosis – and is used to describe the process of programmed dying of cells – of the body actively killing them – rather than their loss by injury. 

Researchers found that ASK1 has unexpected parts to its structure, that help control how the protein is turned on, and that an entire family of ASK kinases share these features.

Dr Mace says that the new findings add to our understanding of how cells can trigger specific responses to different threats or damage encountered, such as oxidants, which damage the body’s tissues by causing inflammation.

He adds that kinases are excellent targets for developing new drugs because they have a “pocket” in their structure that such compounds can bind to, but to develop better drugs we need to understand far more about how they are controlled. This is the goal of several projects in his lab, he says.

The research team determined ASK1’s molecular structure through crystallography studies – using the Synchrotron to see exactly what it is made up of – and performed other biochemical experiments to better understand the protein.

Dr Tom Caradoc-Davies, (below) Principal Scientist of the Macromolecular Crystallography and Micro Crystallography beamlines at the Australian Synchrotron, helped to collect data critical to the project. 

Dr Tom Caradoc-Davies on the MX beamline at the Australian Synchrotron

 “Using the Synchrotron’s MX Beamlines, we collected data from difficult samples, to help solve questions the research team had about the structure of the protein,” Dr Caradoc-Davies said.

“This is a great example of how regular access to the Synchrotron’s facilities can help move a project along more rapidly than otherwise would be the case, where it could take many years more for a team to find an answer, or they may not be able to find one at all.”

The study is a collaboration between Otago researchers and scientists at the Walter and Eliza Hall Institute (WEHI) in Melbourne, and at the Australian Synchrotron. 

Access to this ANSTO landmark research infrastructure was enabled by the New Zealand Synchrotron Group, which is coordinated by the Royal Society of New Zealand and supported by all New Zealand universities in partnership with the Australian and New Zealand Governments.

The Australian Synchrotron is crucial to many other research projects from Otago and throughout New Zealand.

The study was supported by a Royal Society of New Zealand Rutherford Discovery Fellowship and grants from the University of Otago, the Victorian State Government and the National Health and Medical Research Council.


Wed, 21 Dec 2016 12:13:53 EST

It has been a year like no other at the Australian Synchrotron; 2016 saw the securing of $520 million over ten years in operational funding in December 2015 and the transfer of ownership to the Australian Nuclear Science and Technology Organisation (ANSTO) in July 2016, while hosting 5,700 visits by researchers from across Australia, New Zealand and around the world.

In a year that also saw celebrations of ten years since ‘First Light’, the landmark research infrastructure continued to empower researchers and industry to problem solve and innovate, supporting the delivery of real life benefits including durable, rapidly-printable electronics; next-generation batteries that run on sea water; non-invasive brain electrodes to help overcome paralysis; and ‘stainless magnesium’ that could herald a transport revolution.

Looking forward to a new era as part of ANSTO’s world-class suite of landmark research infrastructure, the future looks even brighter. In 2017 and beyond additional capacity and new capability will be realised through nationwide partnerships under the BR-GHT expansion program, enabling the rapid progression of research by harnessing the power of eight new synchrotron techniques.

Download link:

 


Thu, 24 Nov 2016 6:30:00 EST

Left: Dr Wenchao Huang with his PhD supervisor, Associate  Professor Chris McNeill from the Faculty of Materials Science and Engineering at Monash University; right: an organic solar cell; inset: the Australian Synchrotron Stephen Wilkins Thesis Award medal.

 

A young Melbourne researcher has helped lay the groundwork for an environmentally-friendly electronics revolution, defining the complex chemistry that could see affordable, translucent, printable solar panels moulded and shaped to adorn home windows and office towers.

 

Dr Wenchao Huang today received the 2016 Australian Synchrotron Stephen Wilkins Thesis Medal for his research at Monash University into organic photovoltaic (OPV) devices, exploring how critical microstructural features evolve during the preparation of cutting-edge, clear and pliable solar panels, which are tipped to surpass older, silicon-based panels in value and performance over the next decade.

 

Associate Professor Chris McNeill from the Faculty of Materials Science and Engineering at Monash University says Dr Huang’s research balanced the activity of two key solar panel components.

 

‘In the active layer of a polymer solar cell you have the polymer donor – which absorbs sunlight and generates electron-hole pairs – and the fullerene acceptor, which transports electrons to electrodes.

 

‘Under different circumstances, the polymer can become crystallised, which makes charge transport and light absorption more efficient, but reduces the probability that electrons will be successfully transferred to the fullerene, which has a negative effect on power conversion efficiency; experimenting with heat treatment and additive solvents, Wenchao used the Australian Synchrotron’s Soft X-Ray Spectroscopy (SXR) beamline to find a workable balance that we believe will make OPV’s more commercially viable.’

 

Dr Huang, who has since winged his way to new opportunities in the United States at the University of California, Los Angeles, says the key to bringing next-generation solar cells into our homes and workplaces is maximising the power conversion efficiency.

 

‘Silicon has had a huge head start – coming into play in the 1950s while organic solar cells appeared in the mid-1990s – yet commercialised single-crystal silicon solar cells convert around 18-20 per cent of energy from the sun into power, next to 12 per cent for organic.

 

‘We anticipate it will be only years, not decades, until organic takes the lead, costing around half or one third to produce.’

 

Associate Professor McNeill says the team at the Australian Synchrotron provided crucial molecular analysis as broader techniques of the ongoing research were developed, which could impact Australia’s green energy future.

 

‘We believe the upscaling of OPV’s will enable faster development of next-generation solar panels and electronics that are flexible, malleable and more affordable, beyond the limitations of bulky silicon-based electronics.

 

‘The ability to incorporate solar panels into clear windows on houses, skyscrapers and stadiums is a very attractive prospect as Australia works towards a sustainable energy mix that maintains output and reliability while lowering carbon emissions.’

 

Professor Andrew Peele, Director of the Australian Synchrotron and ANSTO Victoria, says through research opening up new pathways for innovation that deliver real life benefits, Dr Huang is a worthy recipient of the medal, which is named in honour of synchrotron pioneer Stephen Wilkins.

 

‘Science is about turning big ideas into innovations that change our world, and Wenchao has embodied this spirit by tackling a complex technical issue using synchrotron science in a way that could revolutionise affordable, renewable energy.

 

‘The thesis medal honours Stephen Wilkins’ creativity and his devotion to nurturing the next generation of scientists, and we wish Wenchao well as he builds his career in the United States.’

 

The Australian Synchrotron Stephen Wilkins Thesis Medal is awarded annually to the PhD student at an Australian or New Zealand university judged to have completed the most outstanding thesis of the past two years, and whose work was undertaken at and acknowledges the Australian Synchrotron or the Australian National Beamline Facility.


Tue, 1 Nov 2016 9:08:00 EDT

 

It was a fittingly sunny afternoon to discuss the power of light when around 130 people, from confessed computing experts to young scientists of the future, gathered in Perth last week to learn how big data and big ideas are translated into real life benefits by experts at the Australian Synchrotron and across the Australian Nuclear Science and Technology Organisation (ANSTO)’s suite of world-class landmark research infrastructure.

 

At the ‘Big data + big ideas = real-life benefits’ lecture, Australian Synchrotron Director Professor Andrew Peele showed dazzling rich-colour images that shed insight into the mind-bending computing behind the real-life benefits delivered through the Australian Synchrotron: from peeling back the surface of priceless artworks to de-clogging inkjet printers, and from enriching the nutrients in essential foods to pharmaceutical breakthrough that are changing the lives of people with cancers and coeliac and Alzheimer’s diseases.

 

Embarking on a ‘deep dive’ into the mechanics of big data, Dr Andreas Moll, Senior Scientific Software Engineer, took the audience through the creation of a one gigapixel image, from data collection and processing to stitching and reconstruction. Incredibly, Dr Moll told guests that technical upgrades to key equipment on one of the facility’s ten beamlines will see data acquisition that currently takes 15 minutes, reduced to only 18 seconds accelerating health and medical research.

 

In a further nod to the future, Professor Peele explained how advances in synchrotron technology are rapidly outpacing increases in the speed of conventional computing devices, paving the way for new investment at the landmark research facility that will massively expand the ability of Australian Synchrotron scientists to translate its torrents of data into improvements in the way we work, eat and live, through partnership with academic researchers and industry clients from across Australia, New Zealand and around the world.

 

Hosted by Dr Erica Smyth, Deputy Chair of ANSTO and Chair of the WA Mega Data Cluster and emceed by Dr Miles Apperley, Head of Research Infrastructure at ANSTO, the lecture left a buzz in the air at the Harry Perkins Institute of Medical Research with one guest describing the display of technical know-how as ‘brain-blasting’. 

 

Click here to download the 'Big ideas + big data = real life benefits' presentation. 

 

 


Got a web page? Want to add this automatically updating news feed? Just copy and paste the code below into your HTML.